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Abstract. Mixing is the physical process through which solute is spread into a fluid by the
stretching and folding of material lines and surfaces. Mixing, as compared to dilution, is
important to solute spreading by groundwater because it operates on much shorter
timescales than does dilution, and it provides the increased plume boundary area and high
local concentration gradients that promote effective solute dilution. In this paper, the
mixing process is investigated theoretically for subsurface tracer plume movement, using as
heuristic examples both steady and unsteady groundwater flows in a perfectly stratified
aquifer whose properties mimic those of the sand aquifer at the Borden site. It is shown
that the stretching efficiency, a parameter that characterizes the effectiveness of mixing, is
largest at transitions between regions of highly contrasting hydraulic conductivity and,
more broadly, that pronounced spatial variability in the hydraulic conductivity is conducive
to good mixing because of the periodic resurgences in material line stretching that it
causes. Unsteady groundwater flow resulting from a decrease in vertical groundwater flux
with time leads to greater rates of material line stretching than do steady flows, whereas
little difference from the steady flow case occurs for unsteady groundwater flow under a
time-varying horizontal hydraulic head gradient. Overall, pronounced spatial variability in
the hydraulic conductivity is the most important contributor to good mixing of a tracer
solute plume, but highly effective mixing requires additional physical conditions that
induce chaotic solute pathlines.

1. Introduction

Solute plumes moving in aquifers are spread by two impor-
tant but quite distinct physical processes. One is termed dilu-
tion, through which a plume is gradually distributed over an
ever increasing volume of an aquifer to produce a reduction in
solute concentration. Dilution is driven by local dispersion
(i.e., dispersion processes occurring at the Darcy scale) and,
secondarily, by complexity in plume shape, which serves to
increase the plume boundary area through which solute mass
can be transported dispersively. Kitanidis [1994] has defined a
“dilution index” to quantify the effectiveness of this physical
process. The dilution index always increases as a solute plume
acted upon by local dispersion becomes more dilute, but it
remains constant if local dispersion is insignificant, regardless
of how a plume may be evolving with time [Kitanidis, 1994].
Thierrin and Kitanidis [1994] and Kapoor and Kitanidis [1998a,
b] have discussed applications of the dilution index to tracer
plume spreading by groundwater as observed in field experi-
ments and in computer simulations of flow in model porous
media.

In contrast to dilution, mixing is the process through which
solute is spread into a fluid by the stretching and folding of
material lines and surfaces [Ottino, 1989, section 1.4; 1990, p.
209]. Mixing is thus driven by advection (especially unsteady
advection) which acts to stretch and fold fluid filaments in such
a manner that plume boundary areas become highly irregular
in shape and enlarged, while concentration gradients normal to
the stretched filaments are increased greatly. Mixing has long

been recognized as a key physical process affecting the spread-
ing of a solute plume by turbulent fluid motions [Batchelor,
1952; Moffatt, 1983]. A principal effect of mixing in this case is
a reduction in the length scales over which concentration gra-
dients occur as material volume elements are thinned [Batch-
elor, 1952; Ottino, 1991]. In groundwater flow a pronounced
spatial variability of the hydraulic conductivity will produce a
specific discharge field that in some ways can be likened to a
turbulent fluid velocity field, and the early phase of spreading
of a solute plume into pristine groundwater should similarly be
governed not by dilution but instead by advective stretching
and folding of material lines and surfaces. This early behavior
appears clearly in the tracer plume simulation reported by
Kapoor and Kitanidis [1998a, Figure 4a], who found that the
dilution index actually decreases concurrently with severe ad-
vective distortion of a solute concentration field.

Mixing processes in groundwater have not been investigated
systematically, although their existence was noted in passing by
Kitanidis [1994] and Kapoor and Kitanidis [1998a]. However,
mixing phenomena, being important much earlier in the
spreading of a solute plume than is dilution, create the com-
plex plume-groundwater interface that enhances local disper-
sion processes [Ottino, 1991; Kitanidis, 1994; Kapoor and
Kitanidis, 1998a]. In this paper we discuss basic concepts of
plume mixing into groundwater, following the conceptual de-
sign of Ottino [1989, chapters 2 and 4; 1990], who considered
fluid flows that were engineered to enhance mixing. The ideas
we present are illustrated by tracer plume mixing during both
steady and unsteady groundwater flows in a perfectly stratified
aquifer, a model system whose tractability permits facile expo-
sure of the main physical and mathematical issues. The mixing
characteristics of unsteady groundwater flows are developed
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and compared to those of the steady flow case. Unsteady flow
is introduced in two steps. First, the magnitude of the horizon-
tal hydraulic head gradient is allowed to vary with time, then
the vertical coordinate of the specific discharge vector is con-
verted to a time-varying parameter. Neither case violates the
simplifying condition of a solenoidal specific discharge field. By
allowing the flow to become unsteady in steps, we expect to see
more clearly how time-dependent aspects of groundwater
movement can improve solute mixing.

2. Quantification of Mixing
By definition, the mixing of a tracer plume into groundwater

involves the stretching of material lines. If M is a unit vector
tangent to a material line element in some state of a fluid that
has been selected as a reference against which to evaluate
stretching, and if F# is the deformation gradient tensor [Eringen,
1980, section 1.4] that relates a line element in some present
state of the fluid to its counterpart in the reference state, then
the length stretch l caused by fluid deformation is defined by
the equation [Ottino, 1989, section 2.6]

lm 5 F# ? M (1)

where m is a unit vector tangent to the material line element in
the deformed fluid state. Because M is a constant vector by
definition, the time dependence of the left side of (1) derives
entirely from that of the tensor F# . (A full introductory discus-
sion of the physical significance of F# is given, e.g., by Eringen
[1980, chapter 1].) The resulting expression for the material
derivative of l is [Ottino, 1989, section 2.9]:

Dl/Dt 5 ~m ? D# ? m!l (2)

where

D# 5
1
2
@=v 1 ~=v!T# (3)

is the “fluid stretching tensor,” i.e., the symmetric part of the
fluid velocity gradient =v [Eringen, 1980, section 2.6]. Equa-
tions (2) and (3) show that time dependence in l occurs when-
ever the component of the fluid velocity gradient along the unit
vector m does not vanish. Physically, this nonvanishing com-
ponent implies that variations in fluid velocity along a material
line element, (i.e., m z =v) are acting to stretch (or contract)
the line element [Batchelor, 1992, section 5.2].

The unit eigenvectors of the symmetric tensor D# in (3) pre-
scribe the directions along which fluid stretching takes on ex-
tremum values [Ottino, 1989, section 2.11, appendix]. Thus the
tensor element m z D# z m is an extremum if m is a unit
eigenvector of D# . Application of the Cauchy-Schwartz inequal-
ity to this tensor element shows that [Ottino, 1989, section 4.1]

um ? D# ? m u2 # uD# u2 (4)

since m is a unit vector, where, in terms of the fluid stretching
tensor elements D# ij,

uD# u2 ; O
i
O

j
D# ijD# ji (5)

is the square of the scalar magnitude of D# , denoted uD# u. The
magnitude of a symmetric tensor can be evaluated in any
convenient set of basis vectors, including that of its eigenvec-
tors, which fact also shows that the right side of (5) is always

equal numerically to the sum of the squares of the eigenvalues
of D# [Ottino, 1989, appendix].

Given (4), it is reasonable to define the stretching efficiency
of the line element whose unit tangent vector is m by the
equation [Ottino, 1989, section 4.1]

el ;
uD ln l/Dt u

uD# u
5

um ? D# ? m u
uD# u

(6)

Clearly, el lies between 0 and 1, thus providing an objective
(i.e., frame indifferent) measure of how well a given material
line element is stretched (or contracted) by a fluid velocity
field.

Ottino [1989, chapter 4] presents a number of calculations of
el and ln l for fluid motions that are relevant to engineered
mixing systems. He notes that for isochoric fluid flows (i.e.,
solenoidal velocity fields), the maximum value of el in three
dimensions is (2/3)21/2 ' 0.816, whereas in two dimensions it
is 221/2 ' 0.707. This latter result follows directly from the
constraint,

O
i51

2

Dii 5 = ? v 5 d1 1 d2 5 0 (7)

which applies to any two-dimensional, solenoidal velocity field,
where d1 and d2 are the two equal and opposite eigenvalues of
D# [Ottino, 1989, appendix]. Since a maximum in um z D# z mu, and
therefore in el, occurs when m is a unit eigenvector of D# , it
follows from (6) and (7) that the maximum stretching effi-
ciency is

el~max! 5
d1

uD# u
5

d1

~d1
2 1 d2

2!1/ 2 5
d1

~2d1
2!1/ 2 5 221/ 2 (8)

where d1 is selected as the positive eigenvalue of D# .
A fundamental physical quantity related to (2) is the time

average of the relative length-stretching rate [Ottino, 1990]:

1
T E

0

T D
Dt ln l dt 5

1
T ln @l~T!/l~0!# T . 0 (9)

Good mixing is defined to occur whenever the right side of (9)
is positive and independent of the orientation of M [Ottino,
1990, 1991], because material line elements in a plume bound-
ary then are growing exponentially with time over the interval
0 , t , T . Exponential growth of material line elements over
very long time intervals is one of the signatures of fluid path
line chaos [Ottino, 1989, section 5.8.2; 1990, p. 219]. This type
of fluid motion is quantified by the infinite-time limit of (9),

s ; lim
T1`

1
T ln @l~T!/l~0!# (10)

which is termed the Liapunov exponent associated with
stretching of the material line element to which l refers. A
sufficient requirement for chaotic behavior of the pathlines
generated by a fluid velocity field is that s have a positive value
[Ottino, 1990], which amounts to a nonzero asymptotic (large
time) average value for the relative rate of line stretching in
(2). This condition of “Lagrangian chaos” portends severe
solute plume distortion and therefore highly effective mixing
[Ottino, 1990, 1991].
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3. Groundwater Flow in a Perfectly Stratified
Aquifer: Illustrative Cases

Sposito and Weeks [1998] have demonstrated that steady
flows of groundwater described by the model specific discharge
expression,

q~ z! 5 K~ z!Jxx̂ 1 K~ z!Jyŷ 1 qzẑ (11)

where circumflexes denote unit vectors along Cartesian axes,
are confined to a family of nonintersecting permanent surfaces
on which lie both the stream lines of q( z) and the field lines of
its vorticity vector,

w~ z! 5 = 3 q 5
dK
dz ~2Jyx̂ 1 Jxŷ! (12)

Equation (11) represents a solenoidal specific discharge field
(= z q 5 0) in a perfectly stratified aquifer whose strata are
congruent with the x 2 y plane. The horizontal components of
the hydraulic head gradient, 2Jx and 2Jy, are uniform,
whereas along the direction perpendicular to the strata, the
specific discharge coordinate qz is uniform because q is sole-
noidal. Sposito and Weeks [1998] illustrated the topology of
steady flows governed by (11) using data for K( z), Jx, Jy, and
qz that were applicable to the sand aquifer at the Borden site
in Ontario, Canada [Roberts and Mackay, 1986; Freyberg, 1986;
Turcke and Kueper, 1996].

A simple generalization of (11) results from permitting the
horizontal head gradient and the vertical specific discharge to
become explicitly time dependent:

q~ z , t! 5 K~ z!Jx~t! x̂ 1 K~ z!Jy~t! ŷ 1 qz~t! ẑ (13)

where

Jx~t! 5 J~t! sin w (14a)

Jy~t! 5 J~t! cos w (14b)

The angle w [ tan21[ Jx(t)/Jy(t)] defines the constant direc-
tion of the horizontal head gradient in the x 2 y plane, J(t)
being its time-dependent magnitude, where J(t) [ [ Jx

2(t) 1
Jy

2(t)]1/ 2. Permitting w to be time dependent is an additional
possibility for creating unsteady flow, but this would only rotate
the pathlines of q( z , t) without stretching them. It will prove
useful to exploit the symmetry inherent in (13) and (14) to
transform (13) into a cylindrical polar coordinate system (r , w ,
z):

q~ z , t! 5 K~ z!J~t! r̂ 1 qz~t! ẑ (15)

Equation (15) describes a solenoidal specific discharge vector
that is confined to the r 2 z plane, with the fixed polar angle
w defining the direction of the r axis relative to the Cartesian
y axis.

The path lines of spatial points (“fluid particles”) moving in
unsteady flow under (13) are solutions of the ordinary differ-
ential equation [Eringen, 1980, section 2.3; Ottino, 1989, section
2.4]:

dc
ds 5

q~ z , t!
q~ z , t! (16)

where q( z , t) 5 {[K( z)J(t)]2 1 [qz(t)]2}1/ 2 and s is arc
length as measured along a path line; i.e., ds/dt 5 q( z , t)/n ,
n being the aquifer porosity. Thus

x~t! 5
1
n E

0

t

K@ z~t9!#Jx~t9! dt9 (17a)

y~t! 5
1
n E

0

t

K@ z~t9!#Jy~t9! dt9 (17b)

z~t! 5
1
n E

0

t

qz~t9! dt9 (18)

is a solution of (16) in terms of Cartesian coordinates param-
eterized by time. The corresponding path lines, as they would
appear in the r 2 z plane, are shown in Figure 1 along with
those for steady flow under (15). To construct them, perme-
ability data from Turcke and Kueper [1996] (second core along
the transect in their Figure 2) were converted to the K( z)
profile in Figure 2 using conventional cubic spline interpola-
tion [Press et al., 1992]. The overall characteristics of this con-
ductivity profile include a harmonic mean, KH 5 2.73 m d21,
and an arithmetic mean, KA 5 7.76 m d21, the latter being
close to the Borden aquifer-wide hydraulic conductivity value,
;8 m d21, cited by Thierrin and Kitanidis [1994] and Turcke
and Kueper [1996]. The value of w in (14) has been taken as 118
east of north, approximately the mean direction of progress of
the center of mass of a tracer plume at the Borden site as
reported by Farrell et al. [1994, Figure 10]. The data for J(t)
shown in Figure 3 were also obtained from Farrell et al. [1994,
Figure 7b] and smoothed by cubic spline interpolation. The
aquifer porosity n is equal to 0.33, the mean value at the
Borden site [Thierrin and Kitanidis, 1994].

The two unsteady flow cases share a common J(t), but case
B has a constant qz, whereas case C has a qz that varies with
time. In Figure 1, qz 5 2.76405 mm d21, a constant value
calculated by Sposito and Weeks [1998] in order to have r( z) 5
20 m when z 5 2 m under steady flow [Freyberg, 1986, Figure
7a], and qz(t) 5 n dzf/dt , where zf(t) also comes from Frey-
berg [1986, Figure 7b], who presented the displacement, in the
r 2 z plane, of the center of mass of a tracer plume at the
Borden site. The resultant qz(t) profile is shown in Figure 4
compared with its 2-year mean value (1.23841 mm d21) and
the constant value qz 5 2.76405 mm d21. The peak values of
qz(t) during the early phase of motion in Figure 4 account for
the earlier and more rapid vertical drop of the path line for
case C compared to those for cases A and B.

4. Stretching Efficiency
For the specific discharge vector in (15),

=v 5
dK
dz

J~t!
n ẑ r̂ (19)

in a dyadic representation, such that the “fluid stretching ten-
sor” for the specific discharge field has the corresponding dy-
adic form:

D# 5
1
2

dK
dz

J~t!
n ~ ẑr̂ 1 r̂ ẑ! (20)

The coefficient of the unit-dyadic terms in (20) is proportional
to the magnitude of the vorticity based on (15):

w~ z , t! 5 = 3 q~ z , t! 5 ẑ 3 dq/dz 5 dK/dzJŵ (21)
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which, like w( z , t) in (12), always lies in a stratum of the
aquifer, perpendicular to a pathline in the r 2 z plane. It
follows from (5) and (20) that

uD# u 5
1

Î2

dK
dz

J~t!
n (22)

The eigenvalues of D# can be calculated by conventional alge-
braic methods, to yield [Ottino, 1989, appendix]

d1 5
1

Î2
uD# u , d2 5 0, d2 5

2 1

Î2
uD# u (23)

the second of which corresponds to the absence of stretching
along the ŵ direction (i.e., D# z ŵ 5 O).

The length stretch l of a material line element then satisfies
(2) in the form

D
Dt ln l 5

dK
dz

J~t!
n ~m ? ẑ!~m ? r̂! 5

dK
dz

J~t!
n cos u sin u

5
1
2

dK
dz

J~t!
n sin 2u (24)

Figure 1. Pathlines for the three groundwater flow cases listed in Table 1.

Figure 2. The hydraulic conductivity profile (Borden site) used in constructing the path lines in Figure 1
[Turcke and Kueper, 1996; Sposito and Weeks, 1998].
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where u is the azimuthal angle between m and the z axis (i.e.,
m z ẑ [ cos u). The corresponding stretching efficiency then
follows from (6), (22), and (24):

el 5
1

Î2
sin 2u (25)

Equation (25) shows that when u 5 p/4 (458), the stretching
efficiency achieves the largest value possible for isochoric, two-
dimensional fluid flow, el (max) 5 1/=2, as derived in (8).

This condition is met in the present case wherever the unit
vector m makes equal angles with the r and z axes.

A specific example is afforded by taking m 5 dc/ds in (16):

m ; sin ur̂ 1 cos u ẑ 5
K~ z!J~t!
q~ z , t! r̂ 1

qz~t!
q~ z , t! ẑ (26)

The resulting form of (24) for the relative rate of length
stretching is then

Figure 3. The magnitude of the time-dependent hydraulic head gradient J(t) at the Borden site (redrawn
from Farrell et al. [1994, Figure 7(a)] with permission from Elsevier Science).

Figure 4. The temporal profile of qz(t) used in constructing the path line in Figure 1 for case C (Table 1),
where qz(t) 5 n dzf/dt and porosity n 5 0.33 [Thierrin and Kitanidis, 1994], with zf(t) from Freyberg [1986,
Figure 7b]. The 2-year mean value of qz(t) is 1.23841 mm d21, indicated by the lower horizontal line, while
the upper horizontal line indicates the constant value qz 5 2.76405 mm d21, appropriate to cases A and B
(Table 1).
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D
Dt ln l 5

dK
dz

J~t!
n S qz~t!

q~ z , t!D SK~ z!J~t!
q~ z , t! D 5

qz~t!
nq~ z , t!S ­q

­ zD
t

5
qz~t!

n S ­

­ z ln qD
t

(27)

which shows that the relative stretching rate is enhanced sig-
nificantly where q( z , t) is changing most rapidly along the
vertical direction in the aquifer. The stretching efficiency cor-
responding to (27) is

el 5
Î2K~ z!J~t!qz~t!

@q~ z , t!#2 (28)

which reaches its maximum value whenever K( z)J(t) 5 qz(t),
according to the definition of the angle u in (26).

Figure 5 presents el as a function of depth following a path
line in the aquifer, based on (18), (28), and the relevant data
for the three cases summarized in Table 1. Comparison of
Figures 2 and 5 indicates that the stretching efficiency achieves
its maximum theoretical value ('0.71) as a pathline traverses

between minimum and maximum values of the hydraulic con-
ductivity (gray line curve superimposed in Figure 5). The ef-
fects of time dependence in the horizontal hydraulic head
gradient and in the vertical coordinate of specific discharge are
more evident in Figure 6, which shows el as a function of time,
again following a path line, using (18), (28), and relevant data
for the three cases summarized in Table 1. The consequence of
a time-varying horizontal hydraulic head gradient, J(t) in Fig-
ure 3, is relatively small, producing a temporal stretching effi-
ciency profile (case B) that is almost coincident with that ob-
tained for constant J (case A). By contrast, the temporal profile
of el that results from a time-varying vertical specific dis-
charge, qz(t) in Figure 4, is both shifted (at t , 200 days) and
broadened (for t ' 300 days) relative to the profile obtained
for constant qz (case A or B). The time shift can be attributed
to the larger values of qz(t), relative to qz, when t , 100 days
(Figure 4), whereas broadening occurs because of the pro-
nounced decline in qz(t) for t . 250 days, which causes a
moving spatial point to linger while traversing the peak in K( z)
just above z ' 2 m (Figure 2).

Equation (27) can be solved readily after substitution of the
right side of (18) for the variable z , thus converting the Eule-
rian material derivative of l to a Lagrangian partial derivative
with respect to time at a fixed initial value of z(t). The solution
of (27) is then:

ln l@ z~t! , t# 5 ln q@ z~t! , t# 2 E
0

t S ­ ln q
­t D

z~t!

dt 1 c1

(29)

where z(t) is given by (18) with z(0) 5 0, and the constant of
integration c1 is determined by the choice of reference state

Figure 5. Vertical profile of the stretching efficiency el, following a path line through a transect of the
aquifer at the Borden site for the three flow cases listed in Table 1. The K( z) profile shown has been scaled
by 0.2/Kmax. Sudicky [1986] finds that qz (the value used for case A) is 10% of the mean horizontal coordinate
of the specific discharge, i.e., qz 5 0.1 KAJ . The vertical line at left represents the value of 0.1 KA 5 0.776
m d21 (also scaled by 0.2/Kmax). Note that maximum stretching occurs for case A wherever the K( z) profile
crosses this line (i.e., whenever K 5 0.1 KA 5 qz/J).

Table 1. Groundwater Flow Parameters for Three Cases
Illustrating Fluid Stretching

Flow Case K( z) J(t) qz(t)

A (steady) Figure 2 0.00356 2.76405 mm d21

B (unsteady) Figure 2 Figure 3 2.76405 mm d21

C (unsteady) Figure 2 Figure 3 Figure 4

Data for K( z) from Turcke and Kueper [1996]. Data for constant J
from Roberts and Mackay [1986]. Data for time-varying J from Farrell
et al. [1994]. Data for qz(t) from Freyberg [1986].
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for which l 5 1. Figure 7 shows temporal profiles of ln l[ z(t),
t] for cases A and C in Table 1, based on a reference state at
z 5 1 m, where K( z) has its smallest value (Figure 2). For this
choice of reference state, l . 1 at all times during steady flow
(case A). During unsteady flow (case C), however, l , 1
between 260 and 310 days because the length stretch is no
longer controlled solely by the magnitude of the specific dis-
charge vector (i.e., path lines are no longer congruent with
streamlines). Indeed, under steady flow (case A), the oscilla-
tory behavior of ln l simply mirrors that of K( z) in Figure 2,
demonstrating the effectiveness of a spatially varying hydraulic
conductivity in producing stretching. By contrast, the oscilla-
tions in ln l under unsteady flow (case C) are time shifted (t ,

200 days), broadened (t . 150 days), and intensified (t ,
100 days) relative to those in ln l under steady flow (case A).

The moving-mean value of D ln l/Dt , calculated with (9)
and (29) for a variable T , is shown in Figure 8 for cases A and
C in Table 1. Good mixing occurs when the moving mean is
positive, according to the criterion defined by Ottino [1990].
This is seen to occur, as expected, during the early phase of
flow, when t , 100 days, and sporadically thereafter. Spatial
variability in K( z) (Figure 2) is the principal cause of the
resurgences in the value of ln l(T)/T , which arise whenever a
path line traverses a peak in K( z). The time interval over
which a resurgence persists is lengthened significantly in case C
because of the slow decline in qz(t).

Figure 6. The stretching efficiency el as a function of time, again following a path line, for the three flow
cases listed in Table 1.

Figure 7. Natural logarithm of the length stretching l for the three flow cases listed in Table 1, as a function
of time following a path line.
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Ottino [1989, chapter 4] has pointed out the importance of
periodic reorientation of material lines as a mechanism for
increasing the efficiency of fluid mixing. This effect is seen
implicitly in Figure 5, where large increases in el, up to its
theoretical maximum value, accompany significant changes in
the direction of a path line as it traverses the boundaries
between zones of highly contrasting hydraulic conductivity
(compare Figures 1 and 2). However, these resurgences in el

do not correspond to an overall exponential time dependence
of the length stretch l, with the result that ln l(T)/T gradually
decays to zero (Figure 8), even under unsteady flow. This
decline is in fact expected in any flow for which a stream
function exists [Ottino, 1989, section 4.7]. In the present study,
the solenoidal property of q( z , t) ensures the existence of a
stream function [Batchelor, 1992, section 2.2]. Correspond-
ingly, the Liapunov exponent in (10) must equal zero, and
“Lagrangian chaos” cannot occur. Therefore the mixing of a
solute plume by unsteady groundwater flow in a perfectly strat-
ified aquifer, although definitely enhanced by pronounced spa-
tial variability in the hydraulic conductivity and by a decreasing
time dependence in the vertical component of the groundwater
velocity, will not be maximally effective unless additional phys-
ical conditions are imposed to induce chaotic path lines.
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Figure 8. Temporal behavior of the moving-mean value of ln l for the three flow cases listed in Table 1. The
infinite-time value of this parameter is the Liapunov exponent for chaotic fluid stretching given in (10).
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